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Fiber-shaped Co modified with Au and Pt
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a b s t r a c t

This work presents the study of catalytic activity of the fiber-shaped Co decorated with low

amounts of Au or Pt nanoparticles for the hydrolysis of sodium borohydride in alkaline

conditions. The morphology, structure and composition of the prepared catalysts were

examined using Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray

Analysis and Inductively Coupled Plasma Optical Emission Spectroscopy.

It was found that the decoration of the fiber-shaped Co with the Au or Pt nanoparticles

allows enhancing of catalytic activity for the hydrolysis of sodium borohydride, compared

with that of the pure fiber-shaped Co.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

On a global scale, hydrogen energy is being touted as an

almost perfect strategy for mitigating energy and environ-

mental challenges. Hydrogen is considered to be a clean and

environmentally friendly energy source for the future, with

wide-ranging applicability across heating, transportation,

mechanical power, and electricity generation [1]. Eventually,

hydrogen is expected to replace traditional energy storage and

supply systems, or at least greatly reduce our dependence on

them. Therefore, fundamental as well as technological

investigations concerning hydrogen generation have assumed

great importance today.

Sodium borohydride (NaBH4) is one of the most promising

candidates for these applications owing to its high theoretical

hydrogen storage capacity (10.8 wt%), nontoxicity, high sta-

bility in strongly alkaline media under ambient operation

conditions, and easily controllable hydrogen production [2e4].

Molecular hydrogen can be easily converted into energy by

using PEM fuel cells thanks to its oxidation with air, giving

water as the main by product [5]. The catalytic hydrolysis of

NaBH4 yields high-purity hydrogen and produces water-

soluble discharge products [2]:
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NaBH4 þ 2H2O / NaBO2 þ 4H2 (1)

However, in real conditions water should be taken into

account since more water is needed to release 4 mol of

hydrogen and can be expressed as:

NaBH4 þ (2 þ x)H2O / NaBO2xH2O þ 4H2 (2)

where x is the excess of water. The rate of this reaction

significantly depends on the catalyst used, its structure, and

the selected support. In order to improve the NaBH4 hydrolysis

reaction many efforts have been made for developing of an

efficient catalysts. The recent progresses in the development

of the hydrogen generation from sodium borohydride hydro-

lysis are reviewed [2e4,6e10]. Conventionally, noble metals,

such as Pt, Ru, Pd, or Rh have been found as the most effective

catalysts for the hydrolysis of sodium borohydride [4,7,10e17].

Although noble metal catalysts maintain excellent catalytic

activity and high stability for the NaBH4 hydrolysis reaction,

their high cost limits their wider use [4,6]. The necessity of

finding more efficient, cost-effective and durable alternatives

has led to further research. Development of catalyst systems

based on the cheaper transition metals as a replacement for

noble metal catalysts is highly desirable. A range of hetero-

geneous cobalt-based catalysts, such as Co, Co-B or Co-B

doped with transition metals (Ni, Fe, Cu, Cr, Mn, Mo or W)

have been studied [2,4,6e10,18e25]. They are thoroughly

overviewed in comprehensive reviews [2,4,6e10]. Regardless

tremendous efforts devoted for the development of the cobalt

and cobalt-based catalyst with perfect catalytic activity, the

major drawback is related to the deactivation of catalysts

[9,26e30]. The catalysts surface during the reaction has been

reported to be blocked by a thick passivation layer of B-O

based compounds [27e29]. Promising way to reduce or even

avoid the formation of adsorbed borates is development of

binary or ternary cobalt-mixed systems with different metals.

The developed Cu-Co based catalysts have demonstrated

significant improvement in stability against adsorption of

borates and subsequent deactivation of the catalyst [31]. The

increased catalytic activity is deemed to be related to the

electronic effects of the system. Moreover, in order to get the

enhanced catalytic activity, the ternary and quaternary alloy

catalysts such as Co-M-B and Co-P-B, and Co-M-B-P (where

M ¼ Ni, Cr, Mo, W, Mn, Cu, Ru) have been developed [9,32e42].

Significant improvement in the catalytic activity due to the

synergic effect was observed. The best performance of this

type of catalyst reported to date is a Co-Mn-B powder, giving a

hydrogen generation rate (HGR) of 35,000 ml min1 (g cata-

lyst)1 [35].

On the other hand, conventional heterogeneous catalysts

are known to suffer from relatively low activities due to their

limited exposed active sites. To enhance their activity, sup-

ports with a large surface area or dopants that effectively

disperse the catalysts and increase their contact area with

reactants are commonly employed. Recently graphene, gra-

phene oxide or N-doped graphene hydrogel supported Co-Ni,

Co-Pt, Co nanoparticles and CoBP [43e47], M@Co (M ¼ Au,

Ag, Fe) [48e53] have been also investigated.

However, enhancing the active surface area of the catalyst

itself, without supporting it on other substrates or introducing

other elements is equally important, since the microstruc-

tures and surface morphologies play decisive roles in the

catalytic performance. As compared to spherical catalysts,

nanostructured catalysts contain more edges, corners, and

faces, and consequently providemore active sites for catalytic

reaction. Different nanostructured morphologies of Co-based

catalysts have been developed so far. In particular, an array

of Co films composed of mesoporous Co-B nanocatalysts with

slit-like pores of different sizes [54], hollow spheres [55],

flower-like [56], honeycomb-like [57] mesoporous Co-B struc-

tures and pompon-like Co-B nanoalloy [58] have been syn-

thesized to improve the hydrolysis of NaBH4. The catalytic

performance of all these nanocatalysts has been found to be

significantly higher as compared to regular Co-B catalysts.

As was mentioned above, the shape and fine structure of

the catalysts have important influence on catalytic properties.

In addition, decoration of non-noble catalysts surfaces with

small amount of noble metal nanoparticles can also enhance

the same catalytic properties as well as to reduce the content

of the expensive, noble metal in the catalytic system [4]. It is

well known that a multimetallic system results in enhanced

catalytic performance for hydrogen generation from NaBH4

hydrolysis in comparison to a bimetallic system. In our pre-

vious study [49], we have demonstrated that the Co surface

with a smooth structure, which was decorated with small

amount of Au nanoparticles, showed improved catalytic ac-

tivity for NaBH4 hydrolysis, as compared to that of bare Co.

Therefore, in the present study we use a fiber-like Co coating

electroplated on a Cu surface as a substrate for deposition of

Au or Pt crystallites (denoted as AuCofiber/Cu and PtCofiber/Cu)

with the aim to use them as catalysts to generate hydrogen

from NaBH4 solution. The prepared catalysts were examined

using field -emission scanning electron microscopy (FESEM),

energy-dispersive X-ray analysis (EDX), and inductively

coupled plasma-optical emission spectroscopy (ICP-OES).

Their catalytic activity was then evaluated for the hydrolysis

of NaBH4 in an alkaline medium.

Experimental

Chemicals

NaBH4 (98%) HAuCl4$3H2O (99.99%, 49.0%), H2PtCl6 (99.95%),

CoSO4$7H2O (98%) and N-(2-Hydroxyethyl)ethylenediamine

were purchased from Sigma-Aldrich Supply. H2SO4 (96%) and

NaOH (99%) were purchased from Chempur Company. All

chemicals were of analytical grade. Deionized water with the

resistivity of 18.2 MU cm1 was used to prepare all the

solutions.

Fabrication of catalysts

A fiber-shaped cobalt coating (approximately 3 mm thick) was

electroplated on a 1  1 cm Cu foil. Prior to electrodeposition,

the surface of the Cu foil was pretreated with SiC emery paper

(grade 2500) andMgO powder, etched in 10%H2SO4, and rinsed

with deionizedwater. The Co coating was electroplated on the

Cu foil using a solution containing 40 g,L1 CoSO4, 100 g,L1

NaOH, and 60 g,L1 N-(2-Hydroxyethyl)ethylenediamine.
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Electrodeposition was performed using a galvanostatic con-

trol with a cathode current density of 20mA cm2 for 20min at

a temperature of 20 ± 2 C.

Au or Pt crystallites were then deposited onto the Co-

coated Cu electrodes by the galvanic displacement tech-

nique. For the deposition of Au crystallites, the Co electrodes

were dipped into a 1 mM HAuCl4 þ 0.1 M HCl solution at a

temperature of 25 C for 30, 60, and 300 s [49]. For the depo-

sition of Pt crystallites, the Co electrodes were dipped into a

1 mM H2PtCl6 þ 0.1 M HCl solution at 25 C for 10, 30, and 60 s.

Characterization of catalysts

The morphology and composition of the prepared catalysts

were characterized using an SEM-focused ion beam facility

(Helios Nanolab 650) equipped with an EDX spectrometer

(INCA Energy 350 X-Max 20).

The Au, Pt, and Co metal loadings on the catalysts were

estimated on the basis of ICP optical emission spectra recor-

ded on an Optima 7000DV ICP optical emission spectrometer

(Perkin Elmer).

Fig. 1 e SEM view of the Cofiber coating electroplated on the

Cu surface from the solution containing 40 g,L¡1 CoSO4,

100 g,L¡1 NaOH, and 60 g,L¡1 N-(2-Hydroxyethyl)

ethylenediamine at a current density of 20 mA cm¡2 for

20 min at a temperature of 20 ± 2 C.

Fig. 2 e SEM images of AuCofiber/Cu (aec) and PtCofiber/Cu (def) prepared by immersion of Cofiber/Cu in 1 mM HAuCl4 þ 0.1 M

HCl for 30 (a), 60 (b) and 300 (c) s and 1 mM H2PtCl6 þ 0.1 M HCl for 10 (d), 30 (e) and 60 (f) s.
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Kinetic studies of the catalytic hydrolysis of NaBH4

The amount of generated hydrogen was measured using a

MilliGascounter (Type MGC-1 V3.2 PMMA, Ritter, Germany). In

a typical measurement, a reaction solution containing NaBH4

and NaOHwas thermostated in an airtight flask, fitted with an

outlet connected to the MilliGascounter for collecting evolved

H2 gas. The Cofiber/Cu, AuCofiber/Cu, or PtCofiber/Cu catalysts

were then immersed into the designated temperature solu-

tions containing 5 wt% NaBH4 þ 0.4 wt% NaOH to initiate

hydrolysis. The rate of hydrogen generation was measured at

different solution temperatures (30e70 C) to determine the

activation energy.

Results and discussion

In the present study, the Au or Pt nanoparticle-modified fiber-

shaped Co coating was investigated as a catalyst for hydrogen

generation from NaBH4 solution. The fiber-shaped Co coating

was electroplated on a Cu surface and used as a sublayer for

the deposition of Au or Pt crystallites.

As illustrated in Fig. 1, the Co coating consists of a layer of

Co fibers in the order of tens of nanometers in thickness and

hundreds of nanometers in length.

Fig. 2 shows SEM images of the Cofiber/Cumodified with Au

(a-c) and Pt (d-f) crystallites. Immersion of the Cofiber/Cu

electrodes into the 1 mM HAuCl4 þ 0.1 M HCl or 1 mM H2PtCl6
þ 0.1 M HCl solutions for various time periods resulted in the

deposition of Au and Pt crystallites on the respective fiber-

shaped Co surfaces. EDX analysis data of the prepared

Cofiber/Cu, AuCofiber/Cu and PtCofiber/Cu catalysts are sum-

marized in Tables 1 and 2. The Au and Pt loadings on the

catalysts were determined by ICP-OES. As evident in Fig. 2, the

Au nanoparticles appear as bright, cubic-shaped crystallites

and are homogeneously dispersed on the fiber-shaped Co

surface (Fig. 2 a-c). After immersing the Cofiber/Cu electrode

into the 1 mM HAuCl4 þ 0.1 M HCl solution for 30 and 60 s, Au

crystallites sized 15e50 nm were deposited on the Cofiber/Cu

surface (Fig. 2 a,b). Immersion of the Cofiber/Cu electrode into

the 1 mM HAuCl4 þ 0.1 M HCl solution for 300 s resulted in the

deposition of larger Au crystallites sized 30e100 nm (Fig. 2 c).

The amounts of Au loadings on the catalysts were determined

to be 20, 28, and 96 mg cm2 corresponding to immersion times

of 30, 60 and 300 s (Table 1).

In the case of PtCofiber/Cu catalysts, Pt crystallites were not

clearly seen in the SEM images (Fig. 2, d-f). However, their

presence was confirmed by the results of EDX and ICP-OES

analyses. The Pt loadings were 5.4, 14.4, and 28.7 mg cm2

corresponding to immersion times of 10, 30, and 60 s,

respectively (Table 2).

Further, the activity of the Cofiber/Cu, AuCofiber/Cu, and

PtCofiber/Cu catalysts for the hydrolysis of NaBH4 was inves-

tigated. Fig. 3 shows the volume of generated hydrogen with

Table 1 e Surface atomic composition of the Cofiber/Cu
and AuCofiber/Cu catalysts by EDX analysis. The catalysts
are the same as in Figs. 1 and 2(aec). The Au and Co
loadings were determined by using ICP-OES.

Catalyst tdep of
Au, s

Elements, at.% Au
loading,
mg cm2

Co
loading,
mg cm2Au Co Cu

Cofiber/Cu e e 99.56 0.43 e 2353.0

AuCofiber/Cu 30 5.32 94.18 0.50 20.0 1615.5

60 10.08 88.80 1.12 28.0 1550.0

300 20.38 76.62 3.00 96.0 1002.5

Table 2 e Surface atomic composition of the PtCofiber/Cu
catalysts by EDX analysis. The catalysts are the same as
in Fig. 2(def). The Pt and Co loadings were determined by
using ICP-OES.

Catalyst tdep of
Pt, s

Elements, at.% Pt
loading,
mg cm2

Co
loading,
mg cm2Pt Co Cu

PtCofiber/Cu 10 0.67 98.23 1.10 5.4 2745.0

30 1.81 97.50 0.69 15.4 2473.5

60 2.42 95.89 1.70 28.7 1982.5

Fig. 3 e (a) H2 generation from 15 ml 5 wt% NaBH4 þ 0.4 wt

% NaOH catalyzed by the Cofiber/Cu at different

temperatures. (b) The Arrhenius plot calculated from the

rates of NaBH4 hydrolysis in a same solution.
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respect to reaction time catalyzed by Cofiber/Cu in a 5 wt%

NaBH4 þ 0.4 wt%NaOH solution at various temperatures. Data

for the rate of hydrogen generation are summarized in Table

3. As seen from Table 3, the rate of catalytic hydrolysis of

NaBH4 in an alkalinemedium exponentially increasedwith an

increase in reaction temperature, and a maximum value of

1.6 L min1 g1 was obtained at a temperature of 70 C. The

temperature dependence of the rate of hydrogen generation

can be expressed by the Arrhenius equation, as follows [59]:

k ¼ AeEa=RT (3)

where k is the rate constant, Ea is the activation energy (J), A is

the frequency factor, and R is the universal gas constant

(8.314 J mol1 K1). In order to find the values of Ea and A, an

Arrhenius plot of ln(k) vs. 1/T was constructed from the data

presented in Fig. 3a, as illustrated in Fig. 3b. An activation

energy of 40.9 kJ mol1 was calculated from this plot.

Hydrogen generation rates measured for the AuCofiber/Cu

with Au loading of 28.0 mg Au cm2 (a) and PtCofiber/Cu with Pt

loading of 28.7 mg Pt cm2 (c) catalysts at various temperatures

are summarized in Fig. 4 and Table 4. In all cases, the rate of

catalytic hydrolysis of NaBH4 in alkaline conditions expo-

nentially increased with increasing reaction temperature. The

Table 3 e Hydrogen generation rate obtained from 15 ml
of 5 wt% NaBH4 þ 0.4 wt% NaOH solution catalyzed by the
Cofiber/Cu catalyst.

Catalysts Co loading,
mg cm2

Tempera-ture,
K

H2 generation
rate, L min1 gCo

1

Cofiber/Cu 2353.0 313 0.4

323 0.7

333 1.1

343 1.6

Fig. 4 e H2 generation from 15 ml 5 wt% NaBH4 þ 0.4 wt% NaOH catalyzed by the AuCofiber/Cu with the Au loading of 28.0 mg

Au cm¡2 (a) and the PtCofiber/Cu catalyst with the Pt loading of 28.7 mg Pt cm¡2 (c) at different temperatures. (b, d) The

Arrhenius plot calculated from the rates of NaBH4 hydrolysis in a same solution.
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Arrhenius plot calculated from the rates of NaBH4 hydrolysis

for these catalysts is shown in Fig. 4b and d. Based on these

plots, activation energies were determined to be 40.7 kJ mol1

for the AuCofiber/Cu and 62.6 kJ mol1 for the PtCofiber/Cu

catalysts. The Ea value for the Cofiber/Cu and AuCofiber/Cu

catalysts was lower than that obtained for Co (41.9 kJ mol1),

Raney Co (53.7 kJ mol1) [60], and other catalysts reported in

Ref. [21].

The hydrogen generation rate obtained for PtCofiber/Cu

(28.7 mg Pt cm2) at a temperature of 70 Cwas higher than that

at AuCofiber/Cu (28 mg Au cm2) and totaled 1238.3 L min1 gPt
1

and 1012.3 L min1 gAu
1, respectively.

Fig. 5 shows the rates of hydrogen generation from NaBH4

solution when catalyzed by various AuCofiber/Cu and PtCofiber/

Cu catalysts at 50 C. Significantly higher hydrogen generation

rates were obtained with the AuCofiber/Cu and PtCofiber/Cu

catalysts (Table 4) as compared to those with Cofiber/Cu (Table

3). Notably, the hydrogen generation rate also depended on

the amount of Au or Pt loadings on the prepared catalysts.

Comparing the performance of the AuCofiber/Cu catalysts in

terms of the amount of Au loadings (ranging between 20 and

96 mg Au cm2) at a temperature of 50 C, the maximum

hydrogen generation rate of 423.5 L min1 gAu
1 was obtained at

an Au loading of 28.0 mg Au cm2. In the case of PtCofiber/Cu

catalysts with Pt loadings in the range 5e29 mg Pt cm2, the

highest hydrogen generation rate of 1155.4 L min1 gPt
1 at a

temperature of 50 C was obtained at the lowest amount of Pt

loading (5.4 mg Pt cm2). For comparison, the hydrogen gen-

eration rates are also presented per grams of total Au-Cofiber

catalyst deposited on the Cu surface. The summarized data

are given in Table 4. Hydrogen generation rates for all the

obtained AuCofiber/Cu catalysts with different Au loading are

ca. 11 times higher compared with those obtained for pure

Cofiber/Cu catalyst, whereas in the case of PtCofiber/Cu cata-

lysts, the measured hydrogen generation rates depend on the

Pt loadings and are ca. 5e11 times higher comparedwith those

obtained for Cofiber/Cu. It should be noted that the highest

hydrogen generation rates at a temperature of 70 C were

obtained for the PtCofiber/Cu (28.7 mg Pt cm2) and AuCofiber/Cu

(28 mg Au cm2) catalysts and totaled ca. 18 L min1 gcatalyst
1 .

These results confirm that the fiber-shaped Co coatings

decorated with Au or Pt crystallites efficiently catalyzed the

hydrolysis of NaBH4 in alkaline conditions.

Comparison of hydrogen evolution on catalysts prepared

in this work with that obtained on various other catalysts

reported in the literature is summarized in Table 5. It is

evident that the catalytic activity of the prepared AuCofiber/Cu

and PtCofiber/Cu catalysts is higher as compared with those of

the noble metal catalysts such as Pt/C, Pt/Si3N4, PtNi/Nifoam,

and non-noble metal-based catalysts: CoPt-PEDOT:PSS/

MWCNT, Ni-Co/rGO, Co on 3D GO and Co-B [12,46,61e66].

Table 4eHydrogen generation rate obtained from 15ml of 5wt%NaBH4þ 0.4wt%NaOH solution catalyzed by the different
AuCofiber/Cu and PtCofiber/Cu catalysts.

Temperature,
K

AuCofiber/Cu catalyst PtCofiber/Cu catalyst

Au loading,
mg cm2

H2 generation
rate, L min1 gAu

1
H2 generation
rate, L min1

gcatalyst
1

Pt loading,
mg cm2

H2 generation
rate, L min1 gPt

1
H2 generation rate,
L min1 gcatalyst

1

303 28.0 158.8 2.8 28.7 67.5 1.0

313 265.6 4.7 154.9 2.2

323 423.5 7.5 420.6 6.0

333 719.5 12.8 630.3 9.0

343 1012.3 17.9 1238.3 17.7

323 20.0 406.0 5.0 5.4 1155.4 2.3

323 96.0 132.9 11.6 15.4 600.6 3.7

Fig. 5 e H2 generation from 15 ml 5 wt% NaBH4 þ 0.4 wt%

NaOH at 50 C catalyzed by the Cofiber/Cu, AuCofiber/Cu and

PtCofiber/Cu catalysts with different Au and Pt loadings.
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Conclusions

We have presented a simple method for the fabrication of

efficient Co-based catalysts for NaBH4 hydrolysis. A fiber-

shaped Co coating was electroplated on a treated Cu surface,

followed by deposition of Au or Pt crystallites on the Co

coating by the galvanic displacement technique. The deposi-

tion of Au or Pt crystallites on the Co coating resulted in

significantly enhanced catalytic activity for the hydrolysis of

NaBH4 in alkaline conditions, as compared to that of bare

fiber-shaped Co coating. The highest hydrogen generation

rates of 1238.3 L min1 gPt
1 and 1012.3 L min1 gAu

1 were ob-

tained for the PtCofiber/Cu and AuCofiber/Cu catalysts, respec-

tively, at 70 C, corresponding to Pt and Au loadings of

28.7 mg cm2 and 20.0 mg cm2.
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