

Rev. 2023-10-26

Dr.-Ing. RITTER Apparatebau GmbH & Co KG

Coloniastr. 19-23 D-44892 Bochum Germany

Tel.:+49-Fax:+49-Email:mailWebsite:www

+49-(0)234 - 92293-0 +49-(0)234 - 92293-50 mailbox@ritter.de www.ritter.de

Divisions:

Plastics engineering & manufacturing Instruments engineering Measuring instruments

Subject to alteration

Documentation

Content

1.	General Information31.1. This Documentation31.2. Sensor environment31.3. Casing Types41.4. Dimensions41.5. Assignment of Sensor Types to possible Sensor Combinations51.6. Calibrations121.7. Measurement of Humid Gases13
2.	Disadvantages of electrochemical (EC) sensors in comparison to the optical gas sensors »RITTER MultiGas«14
3.	Preventive / Protective Measures with Gas Measurements14
4.	Scope of Supply15
5.	Setup
6.	Infrared Sensor17 $6.1.$ Description17 $6.2.$ Applications17 $6.3.$ Specifications17 $6.4.$ Table of Standard Measurement Ranges19 $6.5.$ Table of Detection Limits (= 3 σ) in Percent of Full Scale (FS)20 $6.6.$ Recalibrations20
7.	Ultraviolet Sensors.217.1. Description217.2. Applications217.3. Specifications NDUV Sensor217.4. Specifications H2S Sensor237.5. Specifications UVRAS Sensor257.6. Table of Standard Measurement Ranges277.7. Table of Detection Limits (= 3σ) in Percent of Full Scale277.8. Recalibrations28
8.	Options (installed inside of the sensor casing)298.1. Oxygen Sensor298.2. Pressure Sensor318.3. Humidity Sensor318.4. Analog Voltage Output338.5. Heating and Thermostatting of Sensor Casing34

Documentation

09.03 V 1.4 Rev. 2023-08-27

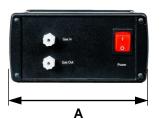
1. General Information

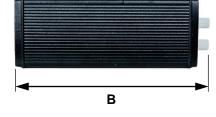
1.1. This Documentation

This documentation has been prepared with the greatest possible care. However, it is intended **for specialist personnel** who are familiar with the principles of gas measurement technology. Basic questions about measurements of gas concentrations, cross-sensitivities etc. can therefore not be answered with this documentation. Please consult the relevant technical literature in this regard.

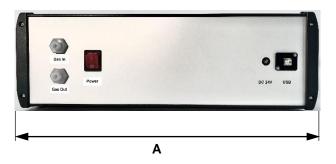
1.2. Sensor environment

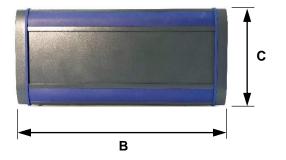
The sensor must not be used in explosive environments or in harsh environmental conditions (e.g. high condensing humidity, strong air currents, aggressive atmospheres, outdoors without housing).


Furthermore, we recommend that the basic requirements are observed with regard to the purification of the gases to be analyzed:


- Reliable particle filtration -inline membrane filter or similar must be checked and maintained regularly.
- Dry sample gas with less than 5°C dew point via electrical cooler and, in the case of heated modules, a condensate trap or similar if necessary.
- Stable sample gas flow between 0.01 ~ 4.0 l/min pump without pressure fluctuation and without back pressure.

1.3. Casing Types


Type 1



Type 2

1.4. Dimensions

	Type 1	Type 2	
A	171 mm	444 mm	
В	290 mm ¹⁾	305 mm	
С	86 mm	145 mm	
Weight, approx. ²⁾	2 * kg	6.5 – 8 kg	
Connections gas in-/outlet		/DF screw-type tube connection for tube Ø 4_i / 6_o mm	
Interfaces	Standard: USB Options: RS232, CANbus, CANopen		
Power supply		in power supply unit V-AC, 50/60 Hz	

¹⁾ May be larger with cuvettes for ppm measurement ranges
 ²⁾ Depending on type and number of built-in sensor modules

1.5. Assignment of Sensor Types to possible Sensor Combinations

- **Part 1:** Pre-configured sensors, incl. casing type 1 with gas connection fittings, data interface, plug-in power supply ready for use
- Part 2: Pre-configured sensors, incl. casing type 2 with gas connection glands, data interface, fittings, data interface, plug-in power supply ready for use
- Part 3: Individually combinable sensor modules, composition according to customer specification, delivery incl. housing in suitable size according to number and type of modules - ready for use
- Part 4: Casings for sensor modules, assembled according to customer's specification
- Part 5: Built-in options mounted inside of the casing
- Part 6: Accessories / options

Part 1: Pre-configured Sensors Incl. casing type 1 with gas connection fittings, data port, power supply Ready for use					
Sensor Type: RMS-xxx	Article No.	Group of Gases IR	Number of Detectable Gases in this Group	Group of Gases UV	Number of Detectable Gases in this Group
		CO ₂			
		CO			
<i>xxx</i> =		N ₂ O			
mono IR1	2678	CH4	1		
		C _n H _m *			
		CF ₄			
		SF ₆			
		CO ₂			
		CO			
		N ₂ O			
xxx = duo IR2	2742	CH4	2		
		$C_nH_m^*$			
		CF ₄			
		SF_6			

* Calibration with Propane

09.06

V 1.4

Rev. 2023-08-27

Sensor Type: RMS- <u>xxx</u>	Article No.	Group of Gases IR	Number of Detectable Gases in this Group	Group of Gases UV	Number of Detectable Gases in this Group
xxx = trio IR3	2743	CO2 CO N2O CH4 CnHm* CF4 SF6	3		
xxx = mono UV1	2749			SO ₂ NO ₂ O ₃ Cl ₂ ≤0.5%	1
xxx = mono UV1 resist	2763			SO₂ Cl₂ ≤30%	1
xxx = duo UV2	2766			$SO_2 \le 0.5\%$ NO_2 O_3 $Cl_2 \le 0.5\%$	2
xxx = duo IR1+UV1	2797	CO ₂ CO N ₂ O CH ₄ C _n H _m * CF ₄ SF ₆	1	SO₂ NO₂ O₃ Cl₂ ≤5%	1
xxx = trio IR1+UV2		CO_2 CO N_2O CH_4 $C_nH_m^*$ CF_4 SF_6	1	SO₂ NO₂ O₃ CL₂ ≤0.5%	2

* Calibration with Propane

Subject to alteration

Documentation

09.07

V 1.4

Rev. 2023-08-27

Part 2: Pre-configured Sensors Incl. casing type 2 with gas connection fittings, data port, power supply Ready for use					
Sensor Type: RMS- xxx	Article No.	Group of Gases IR	Number of Detectable Gases in this Group	Group of Gases UV	Number of Detectable Gases in this Group
xxx = mono UV1 H₂S ≤ 5.000 ppm	2672			H₂S ≤ 5.000 ppm	1
xxx = mono UV1 H₂S ≤ 1%	2855			H₂S ≤ 1%	1
xxx = UVRAS	2812			SO2 NO2 NO	3
xxx = duo IR1 + H₂S ≤ 5000 ppm	2959	CO ₂ CO N ₂ O CH ₄ C _n H _m * CF ₄ SF ₆	1	H₂S ≤5000ppm	1
xxx = duo IR1 + [H₂S ≤1% / NO]	2960	CO2 CO N2O CH4 CnHm* CF4 SF6	1	H2S ≤1% NO	1

* Calibration with Propane

Documentation

09.08

V 1.4 Rev. 2023-08-27

Part 3: Individually combinable sensor modules Composition according Customer Specification Delivery incl. casing of suitable size according to number and type of modules Ready for use					
Sensor Type: RMS-xxx	Article No.	Group of Gases IR	Number of Detectable Gases in this Group	Group of Gases UV	Number of Detectable Gases in this Group
		CO ₂			
		CO			
xxx =		N ₂ O			
Mod IR1	2813	CH4	1		
		C _n H _m *			
		CF4			
		SF ₆			
		CO ₂			
		CO			
xxx =		N ₂ O			
Mod IR2	2814	CH4	2		
		C _n H _m *			
		CF ₄			
		SF ₆			
		CO ₂			
		CO			
xxx =		N ₂ O			
Mod IR3	2815	CH4	3		
		$C_nH_m^*$			
		CF ₄			
		SF_6			

* Calibration with Propane

09.09

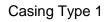
V 1.4

Rev. 2023-08-27

Sensor Type: RMS- <u>xxx</u>	Article No.	Group of Gases IR	Number of Detectable Gases in this Group	Group of Gases UV	Number of Detectable Gases in this Group
xxx = Mod UV1	2830			SO ₂ NO ₂ O ₃ Cl ₂ ≤0.5%	1
xxx = Mod UV1 resist				SO₂ Cl₂ ≤30	1
xxx = Mod UV1 H₂S ≤ 5.000 ppm	2841			H ₂ S	1
xxx = Mod UV1 H₂S ≤ 1%	2856			H ₂ S	1
xxx = Mod UV2	2831			SO₂ NO₂ O₃ Cl₂≤5%	2
xxx = Mod UVRAS	2917			SO₂ NO₂ NO	3

Documentation

09.010


V 1.4 Rev. 2023-08-27

Part 4: Casings for Sensor Modules assembled according to Customer Specification				
RMS-Cas-2 ⁽¹⁾	2817	Casing type 2	Suitable for multiple modules 444 x 305 x 145 mm	
RMS-Cas-3 ⁽¹⁾ 2818		Casing type 3	Suitable for multiple modules 444 x 305 x 189mm	
		Part 5 Built-in Options		
	2795		0 - 25%	
RMS-O2 ⁽²⁾⁽³⁾	2767	Oxygen Sensor	0 - 100%	
RMS-O2-resist ⁽³⁾	RMS-O2-resist ⁽³⁾ 2824 Oxygen Se H ₂ S resis		0.5 - 35%	
RMS-P ^{(2) (3)}	2771 Pressure Sensor		800 - 1200 mbar abs. Resolution <1 mbar	
RMS-P-resist ⁽³⁾	RMS-P-resist ⁽³⁾ 2825 Pressure Sensor H ₂ S resistant		0.2 - 3.5 bar abs. Resolution 2 mbar	
RMS-H ^{(2) (3)}	2773	Humidity Sensor	0 - 100% RH	
RMS-A/O	2648	Analog Voltage Output 0-2V / 0-5V / 0-10V	4 Analog output ports for 4 separate gas concentrations, 16 bit	
RMS-CasHeat	2954	Thermostatted Casing	Heating and thermo- statting of the sensor casing at 50°C	

⁽¹⁾ Casing type depends on the type and number of built-in sensor modules

- $^{(2)}$ Not suitable for SO2, Cl2, H2S
- ⁽³⁾ Available as supplement to IR or UV sensor only

Documentation

09.11 V 1.4

Rev. 2023-08-27

Part 6: Accessories / Options					
xxx = Cal-ZP-N ₂ 2805		Calibration Gas N ₂	For zero-point calibra- tion of all gases		
xxx = Flow-V	2806	Mini Flow Valve	Control of flow rate for calibration gas bottle incl. manometer		
xxx = Cal-CG-Cat1	2948	Calibration with special carrier gas (Ar, H2, He) for gases category 1	Category 1 gases: CO ₂ , CO < 10Vol-%, N ₂ O, CH ₄ , C _n H _m , CF ₄ , SF ₆ , O ₃ , CL ₂ , NO, NO ₂ , SO ₂ < 10Vol-%		
xxx = Cal-CG-Cat2	2949	Calibration with special carrier gas (Ar, H2, He) for gases category 2	Category 2 gases: CO > 10Vol-%, H ₂ S, SO ₂ > 10Vol-%		
xxx = Cal-ReCal-Cat1	2950	Recalibration for gases category 1	Category 1 gases: CO_2 , $CO < 10Vol-\%$, N_2O , $CH4$, C_nH_m , CF_4 , SF_6 , O_3 , CL_2 , NO , NO_2 , $SO_2 < 10Vol-\%$		
xxx = Cal-ReCal-Cat2	2951		Category 2 gases: CO > 10Vol-%, H ₂ S, SO ₂ > 10Vol-%		

Documentation

1.6. Calibrations

Depending on the number of gases to be analysed, a suitable calibration gas must be selected. Furthermore, the type of gas also influences the optimal calibration gas. Because of the almost infinite number of possible combinations, the following list should therefore only be understood as a first overview.

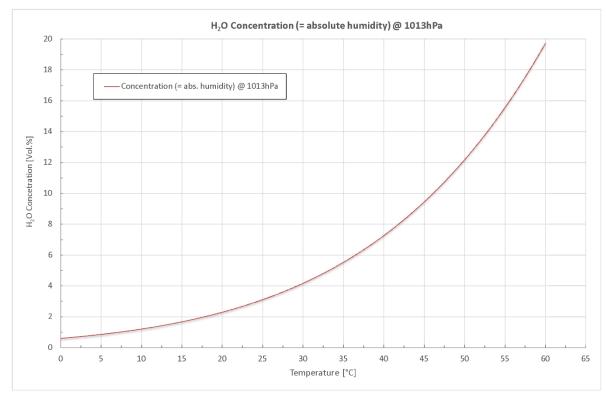
- 1. One gas: Calibration in N₂
- 2. Two gases:
 - a) Binary gas mixture: Definition: The sum of the concentrations of both gases is 100%.

The Calibration takes place in the respective other gas "gas in gas". (e.g. CO_2 in CH_4 , CH_4 in CO_2)

b) For specific measuring ranges, e.g. CO_2 0-10 Vol.% and CO 0-20 Vol.%, a calibration of one gas at a time is carried out in nitrogen N₂.

For specific measuring ranges such as CO_2 0-10 vol.% and CO 0-20 vol.%, a calibration of one gas each is carried out in nitrogen N₂. The calibration would be carried out in the above example as follows:

- CO2 10 Vol.% + 90 Vol.% N2
- CO 20 Vol.% + 80 Vol.% N2
- 3. Three and more gases: The carrier gas dependency of the individual gas components must be checked individually. Then, for example, gas 1 and gas 2 can be defined as binary (and calibrated as "gas in gas") and gas 3 can be calibrated in N₂.



1.7. Measurement of Humid Gases

When measuring humid gases, it is essential to prevent condensation of the water vapour inside the sensor. The following diagram shows the maximum water vapour concentration (= absolute humidity) in volume % as a function of temperature at the standard pressure 1013 mbar.

It can be seen from the diagram:

• At room temperature, no condensation occurs up to a maximum humidity of 2 vol.%.

• Condensation occurs at concentrations above the curve shown.

Condensation can be prevented by the following measures:

- Condensate trap or gas cooler in flow direction in front of the sensor. Please note: This will increase the **dead space** in front of the sensor.
- Installation of a heating element with thermostatting in the sensor casing see para. 8.5. With this heating element, a temperature increase of up to 45°C is possible. Thus, condensation can be prevented up to a water vapour concentration (abs. humidity) of approx. 12 vol.%. Please note: In addition to heating the sensor, the external gas lines/tubes from the gas source to the sensor unit must also be heated.

With the optional humidity sensor (see para. 8.3) the relative humidity can be measured in the measuring range of $0 \sim 100\%$ rH. Furthermore, the absolute humidity can be measured as well in g/m³. Both values are displayed in the supplied software.

Documentation

2. Disadvantages of <u>electrochemical</u> (EC) sensors in comparison to the <u>optical</u> gas sensors »RITTER MultiGas«

- EC sensors become "blind" over time and then display a constant value, usually zero. This suggests misleadingly a stable zero point.
- EC sensors must therefore be replaced preventatively every 0.5 2 years, after replacement the sensor must be recalibrated, as the tolerances of EC sensors are relatively high. This causes supplementary additional costs.
- With EC sensors, mutual influence and deterioration occur by different gases, e.g. NO₂ damages the SO₂ sensor and vice versa.
- EC sensors react very strongly to hydrogen. Such sensors are therefore unusable for accurate measurements even at the smallest concentrations of H₂ in the gas mixture.
- In many countries (e.g. in China) EC sensors are forbidden by law with governmental inspection and approval measurements, because they show too low values if they are contaminated or aged. The user then receives "false positive" values.
- The lifetime of the EC cells is already reduced during storage; therefore, the storage should only be a few weeks.
- The response time (t₉₀) is relatively long compared to the optical measuring methods mostly about 30 sec. Optical systems are in the range < 5 sec.
- Due to the measuring principle of the EC sensors there is always a chemical reaction between the test gas and the sensor. By this reaction, small quantities of the test gas components are converted. For example, CO is converted into CO₂. With low quantities of test gas, measurements beyond the gas sensor can therefore be influenced because fewer CO molecules are present in the gas sample.

3. Preventive / Protective Measures with Gas Measurements

Important: Please specify the desired options when ordering

a) Additional tube connection for flushing of the casing

The gas lines inside the casing and the measuring cuvette are gas-tight by means of O-rings and other gas-tight connections. However, as with all connections, a leakage rate, however slight, cannot be ruled out. With an additional tube connection for flushing of the casing, an accumulation of the measuring gas inside the casing can be prevented.

In the case of **toxic or aggressive gases**, a suction line can be connected via this tube connection, which creates an under-pressure inside the housing thus preventing the gas from escaping from the casing.

In case of **ignitable gases (methane, hydrogen, etc.)**, a pressure or suction line can be connected via this tube connection creating an over- or under-pressure inside the casing thus preventing the accumulation of an ignitable gas mixture.

Please note: H2S can be perceived as an unpleasant smell even in the ppb range. Even with an O-ring seal, micro-leaks can occur, which can be extracted by flushing the housing.

b) Heated and thermostatted casing

By all means, a condensation of the measuring gas inside of the sensor must be prevented. Please refer to the information in para. 1.7 "Measurement of Humid Gases".

Alternatively, the inside of the sensor casing can be heated and thermostatted at 50°C (standard). The heating not only avoids condensation inside of the sensor but ensures constant measurement results as well.

c) Particle filter

Please make sure by use of a suitable filter that no particles are carried into the sensor. These might block the small orifices of the internal fittings. It is recommended to use filters of 5 micron or smaller.

4. Scope of Supply

No. of Items	Item			
1	Document folder including			
	Calibration Certificate			
	Data Sheets			
	Software Manual			
1	Sensor in table top casing			
	Plug-in power supply unit			
1	Input: 100-240 V-AC, 50/60 Hz, 0.4 A			
	Output: 24 V-DC, 0.5 A, 12 W or 36 W (H_2S / UVRAS sensor)			
1	Data acquisition software (on USB memory card)			
	Connection cable sensor \Rightarrow computer			
1	Standard: USB V2.0 A/B, 1 m			
	Option: RS232, D-Sub socket 9pol. on the unit,			
	connection cable [1x D-Sub male 9pin - 1x D-Sub female 9pin], 2 m			
3 m	Viton tubing \mathcal{O}_i 4 mm / \mathcal{O}_o 6 mm			

Documentation

5. Setup

- 1. Unpack all items carefully
- 2. Install the data acquisition software according to the "RITTER MultiGas Software Manual". **Don't start the software at this point in time.**
- 3. Positioning of the sensor:
 - a) The sensor must not be used in explosive environments or in harsh environmental conditions (e.g. high condensing humidity, strong air currents, aggressive atmospheres, outdoors without housing).
 - b) If the sensor is used in combination of a RITTER MilliGascounter, the sensor <u>must</u> be positioned (in flow direction) in front of the MilliGascounter if this MilliGascounter is filled with HCl solution. Otherwise, the sensor could be damaged by the HCl vapour coming out of the MilliGascounter.
 - c) Place the sensor next to the gas source Please note: A tube connection between gas source and sensors that is as short as possible allows a small dead space created by the tubing. In turn, a small dead space enables a fast response time of the sensor.
- 4. Connect the power adapter to socket "DC 24 V" at the rear side of the sensor and to mains.
- 5. Connect the data acquisition cable to the respective socket at the rear side of the sensor and to the computer:
 - a) USB cable to the socket "USB"
 - b) RS232 cable to the socket "RS 232" (option)
- 6. Connect the gas source to the gas inlet port of the sensor by using the provided tubing as follows:
 - a) Remove the screw caps as well as the red rubber caps of the transport lock from the gas inlet and gas outlet.
 - b) Slide the screw cap onto the end of the gas inlet tube with the thread of the screw cap facing the tube end.
 - c) Push the tube onto the cone in the center of the gas inlet port.
 - d) Slide the screw cap to the gas inlet port and screw it hand-tightly in place.
- 7. If applicable: Connect the gas outlet port of the sensor to other components such as gas sampling bags, exhaust tubing etc.
 - The connection of the tube to the gas outlet port takes place in the same way as described above.
- 8. Switch-on the power switch at the front side of the sensor casing.
- 9. Start the software and open the COM port(s) of the connected sensor module(s) according to the software manual.

The »RITTER MultiGas« Sensor is now ready for use.

6. Infrared Sensor

6.1. Description

Gas analysis based on the NDIR technique is an established method to determine the concentrations of gases in complex mixtures. The »RITTER MultiGas« sensors use new optical components for optimal analysis results: Up t

o 3 optical filters analyse the gas which flows through the sensor as one gas stream. The optional oxygen, pressure, and humidity sensors are in-line with the same single gas stream.

The individual internal modules are sealed by means of O-ring connections.

In order to achieve an optimum adaptation to the required measuring range, the lengths of the modular measurement cells (= cuvettes) can be implemented in the range of 5 mm (large measurement range in percentage level) up to 250 mm (small measurement range in ppm level).

Cuvettes with a length \ge 20 mm are coated with a resistant gold layer in order to improve the reflection properties for

6.2. Applications

- Biogas / natural gas analysis
- Environmental and Process Measurement
- TOC analysers

low concentration level detection. Cuvettes used with aggressive gases are gold-coated as well.

The other internal mechanical parts are made out of aluminium, optionally out of stainless steel.

For fast response applications the measuring system delivers a stable result within $t_{90} \approx 3$ seconds.

The entire unit can be disassembled for easy maintenance/service.

- Continuous Emission Monitoring (CEM)
- Elemental analysis
- Industrial gas analysis

6.3. Specifications

General features	
Measurement technology	Innovative NDIR Sensor (non-dispersive infrared sensor)
Detectable gases	CO ₂ , CO, N ₂ O, NO, CH ₄ , C _n H _m *, CF ₄ , SF ₆
Number of simultaneously detect- able gases	max. 3 per sensor unit
Measurement ranges	See par. 6.4 or https://www.ritter.de/en/products/sensors#ranges
Flow rate range	5 ~ 300 ltr/h For higher flow rates the sensor can be operated in bypass
Max. gas inlet pressure	300 mbar
Pressure loss (without additional optional sensors)	10 @ 100 / 35 @ 200 / 70 @ 300 [mbar @ ltr/h]

GAS SENSORS »RITTER MULTIGAS« Infrared Sensors (NDIR)

Temperature compensation	Yes
Data acquisition software	Yes
Lifetime of IR radiation source	> 40 000 h
Measurement cuvette	Aluminium, with measurement ranges ≤1% gold-plated inside
Cuvette sealing	Viton O-ring
Internal tubing	FKM / Viton ™ (fluorinated rubber)
Casing	High-quality table-top casing, aluminium
Dimensions	W x H x L 171 x 86 x 290 mm
Weight	approx. 2 kg
Gas connections	PVDF screw-type tube connection for tube \mathcal{O}_i 4mm, \mathcal{O}_o 6 mm
Measuring response	
Linearity error	< ± 1% F.S.
Repeatability	± 0.5% F.S.
Long term stability zero	< ± 2% F.S. / week
Long term stability span	< ± 2% F.S. / month
Temperature influence of zero point	< 1% F.S. / 10K
Temperature influence of span	< 2% F.S. / 10K
Cross sensitivity	< 2% F.S.
Pressure influence	< 1.5% / 10hPa of reading
Warm-up time	2 min
Response time (t ₉₀)	≈ 3 sec
Sampling frequency by software	≤ 10 Hz
Detection limit $(3 \cdot \sigma)$	See par. 6.5 or https://www.ritter.de/en/products/sensors#limits
Resolution	0.5 x detection limit
Water vapour	No influence with measurements of CO_2 and CH_4
Electrical features	
Power supply	24 VDC, incl. power plug 100~240 VAC, 50/60 Hz \Rightarrow 24 VDC
Average power consumption	< 1W
Interfaces	standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m
Analogue voltage output (option)	0-2V / 0-5V / 0-10V

GAS SENSORS »RITTER MULTIGAS« Infrared Sensors (NDIR)

Climatic conditions	
Operating temperature	+15 ~ +45 °C
Storage temperature	−20 ~ +60 °C
Operating pressure	800 ~ 1200 hPa (mbar)
Ambient humidity	0 ~ 95% rel. humidity Condensing inside of sensor must be prevented!

* Analysis of C_nH_m:

The calibration of sensors for C_nH_m will be performed with propane. Aromatic hydrocarbons are also measured but with a different weighting. This means that the sensitivity of the sensor is significantly smaller with these gases than with other hydrocarbons.

6.4. Table of Standard Measurement Ranges

Full Scale ¹⁾	CO ₂	CO	N ₂ O	CH_4	C _n H _m ²⁾	CF_4	SF_6	H ₂ O
100 vol. %	х	х	х	х	х	х	х	
50 vol. %	х	х	x	х	х		х	
30 vol. %		х	x	х	x		х	
20 vol. %	х							
10 vol. %	х	х		х	x			
5 vol. %	х	х		х	х			
2 vol. %								х
1 vol. %	х	х		х	x			
5,000 ppm	х	х		х	х		х	
2,000 ppm	х	х	x	х	x			
1,000 ppm	х	х	x	х	x		х	
500 ppm	х	х	x					
300 ppm			x					
100 ppm	х		x				х	
50 ppm	x						x	

 Measurement range = Zero to Full Scale (FS) Sensors are calibrated in the same range "Zero to Full Scale (FS)"

²⁾ Calibration with Propane

Other ranges on request

09.20 V 1.4

Rev. 2022-11-06

Full Scale	CO ₂	CO	N ₂ O	CH_4	C_nH_m	CF_4	SF_6	H ₂ O
100 vol. %	< 0.1%	< 0.2%	< 0.1%	< 0.1%	< 0.1%	< 0.2%	< 0.1%	
50 vol. %	< 0.1%	< 0.2%	< 0.1%	< 0.1%	< 0.1%	< 0.2%	< 0.1%	
30 vol. %		< 0.2%	< 0.1%	< 0.1%	< 0.1%	< 0.2%	< 0.1%	
20 vol. %	< 0.1%							
10 vol. %	< 0.1%	< 0.2%		< 0.1%	< 0.2%			
5 vol. %	< 0.1%	< 0.2%		< 0.1%	< 0.2%			
2 vol. %								0,005%
1 vol. %	< 0.1%	< 0.2%		< 0.1%	< 0.2%			
5,000 ppm	< 0.1%	< 0.2%		< 0.1%	< 0.2%			
2,000 ppm	< 0.1%	< 0.3%	< 0.1%	< 0.3%	< 0.5%			
1,000 ppm	< 0.1%	< 0.5%	< 0.1%	< 0.5%	< 0.5%			
500 ppm	< 0.1%	< 0.5%	< 0.1%					
300 ppm	< 0.1%		< 0.1%					
100 ppm	< 0.3%		< 0.3%					
50 ppm	< 0.3%							

6.5. Table of Detection Limits (= 3σ) in Percent of Full Scale (FS)

Definition of Detection Limit

The Detection Limit is the smallest measurement value which can be obtained with a specific uncertainty. This uncertainty includes the resolution, noise and stability of the gas sensor for a specific gas and specific measurement range. For evaluation of the detection limit value, several single measurements are taken at the identical measurement conditions. With the obtained single measurement results the standard deviation "Sigma" (σ) is calculated. The values given in the table equal the triple amount of Sigma.

6.6. Recalibrations

The following recalibration intervals are recommended for IR sensors:

- Zero-point: Weekly with inert gas, e.g. Nitrogen
 The recalibration of the zero point is described in the software manual.
- End-point (full scale): Every 3 months with suitable calibration gas

7. Ultraviolet Sensors

7.1. Description

The »RITTER MultiGas« UV sensor is the world's first gas analysis module based on miniaturized UV-LEDs. The stability and lifetime of these UV-LEDs enables high-precision gas analyses down to the ppm range. By using two UV-LEDs two gases can be detected simultaneously. Furthermore, with this approach measuring ranges from ppm to Vol.-% can be realized.

In the spectral range from 200 nm to 500 nm, nitrogen oxides (NO+NO₂), aromatic hydrocarbons, hydrogen sulphide, ozone, sulphur dioxide and chlorine can be reliably detected with this new sensor platform.

The entire unit can be disassembled for easy maintenance/service.

The individual internal modules are sealed by means of O-ring connections.

In order to achieve an optimum adaptation to the required measuring range, the lengths of the modular measurement cells (= cuvettes) can be implemented in the range of 5 mm (large measurement range

7.2. Applications

- Biogas / natural gas analysis
- Environmental and Process Measurement
- TOC analysers

7.3. Specifications NDUV Sensor

in percentage level) up to 250 mm (small measurement range in ppm level).

Cuvettes with a length \ge 20 mm are coated with a resistant gold layer in order to improve the reflection properties for low concentration level detection. Cuvettes used with aggressive gases are gold-coated as well.

The internal mechanical parts are made out of aluminium, optionally out of stainless steel.

For fast response applications the measuring system delivers a stable result within $t_{90} \approx 1-2$ seconds.

- Continuous Emission Monitoring (CEM)
- Elemental analysis
- Industrial gas analysis

General features	
Measurement technology	Innovative NDUV Sensor (non-dispersive ultraviolet sensor)
Detectable gases	SO ₂ , NO ₂ , O ₃ , Cl ₂
Number of simultaneously detect- able gases	max. 2
Measurement ranges	See par. 7.6 or https://www.ritter.de/en/products/sensors#ranges
Flow rate range	5 ~ 300 ltr/h For higher flow rates the sensor can be operated in bypass

GAS SENSORS »RITTER MULTIGAS« Ultraviolet Sensors (NDUV & UVRAS)

Max. gas inlet pressure	300 mbar
Pressure loss (without additional optional sensors)	10 @ 100 / 35 @ 200 / 70 @ 300 [mbar @ ltr/h]
Temperature compensation	Yes
Data acquisition software	Yes
Lifetime of UV radiation source	> 8 000 h
Measurement cuvette	Stainless steel with silicone coating inside
Cuvette sealing	Viton O-ring
Internal tubing	FKM / Viton ™ (fluorinated rubber)
Casing	High-quality table-top casing, aluminium
Dimensions	W x H x L 464 x 189 x 305 mm
Weight	approx. 6.5 ⁺ kg
Gas connections	PVDF screw-type tube connection for tube \mathcal{Q}_i 4mm, \mathcal{Q}_o 6 mm
Measuring response	
Linearity error	< ± 1% F.S.
Repeatability	± 0.5% F.S.
Long term stability zero N ₂	< ± 1% F.S. / 24h
Long term stability span	< ± 1% F.S. / month
Temperature influence of zero point	< 1% F.S. / 10K
Temperature influence of span	< 2% F.S. / 10K
Cross sensitivity	< 2% F.S.
Pressure influence	< 1.5% / 10hPa of reading
Warm-up time	1 min (initial), <60 min for full specification
Response time (t ₉₀)	1.5 - 15 sec
Sampling frequency by software	≤ 10 Hz
Detection limit $(3 \cdot \sigma)$	See par. 7.7 or https://www.ritter.de/en/products/sensors#limits
Resolution	0.5 x detection limit
Electrical features	
Power supply	24 VDC, incl. power plug 100~240 VAC, 50/60 Hz \Rightarrow 24 VDC
Supply current (peak)	<0.4 A
Average power consumption	< 7.5 W
Interfaces	standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m
	Subject to all

Analogue voltage output (option)	0-2V / 0-5V / 0-10V
Climatic conditions	
Operating temperature	+25 ~ +45 °C
Storage temperature	–20 ~ +60 °C
Operating pressure	800 ~ 1200 hPa (mbar)
Ambient humidity	0 ~ 95% rel. humidity Condensing inside of sensor must be prevented!

7.4. Specifications H₂S Sensor

The H₂S sensor works according to the principle of non-dispersive UV absorption (NDUV).

The measuring wavelength used is in the lower nanometer range, which enables interference-free measurements with water vapour and hydrocarbons. This makes the sensor ideal for use in biogas measurements, as accompanying gases such as NH_3 , CO_2 , CH_4 and H_2O do not affect the accuracy of the measurements.

General features

Measurement technology	Innovative NDUV Sensor (non-dispersive ultraviolet sensor) Dual beam
Detectable gases	H ₂ S, SO ₂ , CH ₄
Number of simultaneously detect- able gases	max. 2
Measurement ranges	See par. 7.6 or https://www.ritter.de/en/products/sensors#ranges
Flow rate range	5 ~ 300 ltr/h For higher flow rates the sensor can be operated in bypass
Max. gas inlet pressure	300 mbar
Pressure loss (without additional optional sensors)	10 @ 100 / 35 @ 200 / 70 @ 300 [mbar @ ltr/h]
Temperature compensation	Yes
Data acquisition software	Yes
Lifetime of UV radiation source	> 8 000 h
Measurement cuvette	Stainless steel with silicone coating inside
Cuvette sealing	Viton O-ring
Internal tubing	FKM / Viton ™ (fluorinated rubber)
Casing	High-quality table-top casing, aluminium
Dimensions of module	W x H x L 300 x 100 x 81 mm

Subject to alteration

GAS SENSORS »RITTER MULTIGAS« Ultraviolet Sensors (NDUV & UVRAS)

Data Sheet

Weight of module	approx. 1670 g			
Gas connections	PVDF screw-type tube connection for tube \mathcal{O}_i 4mm, \mathcal{O}_o 6 mm			
Measuring response				
Linearity error	< ± 1% F.S.			
Repeatability	± 0.5% F.S.			
Long term stability zero N ₂	< ± 1% F.S. / 24h			
Long term stability span	< ± 1% F.S. / month			
Temperature influence of zero point	< 1% F.S. / 10K			
Temperature influence of span	< 2% F.S. / 10K			
Cross sensitivity	< 2% F.S.			
Pressure influence	< 1.5% / 10 hPa of reading			
Warm-up time	1 min (initial), < 15 min for full specification			
Response time (t90)	1.5 - 15 sec			
Sampling frequency by software	≤ 10 Hz			
Detection limit $(3 \cdot \sigma)$	See par. 7.7 or https://www.ritter.de/en/products/sensors#limits			
Resolution	0.5 x detection limit			
Electrical features				
Power supply	24 VDC, incl. power plug 100 ~ 240 VAC, 50/60Hz \Rightarrow 24 VDC			
Supply current (peak)	< 0.4 A			
Average power consumption	< 7.5 W			
Interfaces	standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m			
Analogue voltage output (option)	0-2V / 0-5V / 0-10V			
Climatic conditions				
Operating temperature	+5 ~ +45 °C			
Storage temperature	–20 ~ +60 °C			
Operating pressure	800 ~ 1200 hPa (mbar)			
Ambient humidity	0 ~ 95% rel. humidity Condensing inside of sensor must be prevented!			

•

7.5. Specifications UVRAS Sensor

For the detection of NO an EDL (electrodeless gas discharge lamp) is used. In the EDL, N_2 and O_2 are converted to NO and produce a selective UV radiation. With this radiation, a cross-sensitivity-free NO measurement is made possible. This method is called UV resonance absorption spectroscopy (UVRAS).

A combination of both the UVRAS and NDUV technology allows the simultaneous gas analysis of NO, NO_2 and SO_2 in

the lower ppm range which is particularly important in flue gas analysis (Continuous Emission Monitoring, CEM).

General features	
Measurement technology	UV resonance absorption spectroscopy (UVRAS)
Detectable gases	NO, NO ₂ , SO ₂
Number of simultaneously detect- able gases	max. 3
Measurement ranges	See par. 7.6 or https://www.ritter.de/en/products/sensors#ranges
Flow rate range	5 ~ 300 ltr/h For higher flow rates the sensor can be operated in bypass
Pressure loss (without additional optional sensors)	10 @ 100 / 35 @ 200 / 70 @ 300 [mbar @ ltr/h]
Temperature compensation	Yes
Data acquisition software	Yes
Lifetime of UV radiation sources	LED > 20 000 h (NO ₂ , SO ₂) EDL> 8 000 h (NO)
Measurement cuvette	Stainless steel with silicone coating inside
Cuvette sealing	Viton O-ring
Internal tubing	FKM / Viton ™ (fluorinated rubber)
Casing	High-quality table-top casing type 2, aluminium
Dimensions	W x H x L 464 x 189 x 305 mm
Weight	approx. 6.5 ⁺ kg
Gas connections	PVDF screw-type tube connection for tube \mathcal{O}_i 4mm, \mathcal{O}_o 6 mm

GAS SENSORS »RITTER MULTIGAS« Ultraviolet Sensors (NDUV & UVRAS)

Data Sheet

09.26

V 1.4

Rev. 2022-11-06

Measuring response	
Linearity error	< ± 1% F.S.
Repeatability	± 0.5% F.S.
Long term stability zero N ₂	< 3 ppm / 24h
Long term stability span	< ± 1% F.S. / month
Temperature influence of zero point	< 1% F.S. / 10K
Temperature influence of span	< 2% F.S. / 10K
Cross sensitivities	$500 \text{ ppm NO}_2 < 2\text{ppm}$ $100 \text{ ppm SO}_2 < 2\text{ppm}$ $100 \text{ ppm N}_2\text{O} < 10\text{ppm}$ $20^{\circ}\text{C} \text{ D.P. H}_2\text{O} < 10\text{ppm}$
Pressure influence	< 1.5% / 10hPa of reading
Warm-up time	1 min (initial), <60 min for full specification
Response time (t ₉₀)	1.5 ~ 15 sec
Sampling frequency by software	≤ 10 Hz
Detection limit $(3 \cdot \sigma)$	See par. 7.7 or https://www.ritter.de/en/products/sensors#limits
Resolution	0.5 x detection limit
Electrical features	
Power supply	24 VDC, incl. power plug 100~240 VAC, 50/60 Hz \Rightarrow 24 VDC
Supply current (peak)	1.5 A
	00 074
Inrush current	0.2 ~ 0.7 A
Inrush current Power consumption (peak)	0.2 ~ 0.7 A 36 W
Power consumption (peak)	36 W standard: USB options: RS232, CANbus, CANopen
Power consumption (peak) Interfaces	36 W standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m
Power consumption (peak) Interfaces Analogue voltage output (option)	36 W standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m
Power consumption (peak) Interfaces Analogue voltage output (option) Climatic conditions	36 W standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m 0-2V / 0-5V / 0-10V
Power consumption (peak) Interfaces Analogue voltage output (option) Climatic conditions Operating temperature	36 W standard: USB options: RS232, CANbus, CANopen incl. data transmission cable 1 m 0-2V / 0-5V / 0-10V +5 ~ +40 °C

09.27 V 1.4

Rev. 2022-11-06

υ.	. Table of Standard Measurement Ranges								
	Full Scale ¹⁾	O ₃	CL ₂	H ₂ S	NO	NO ₂	SO ₂		
	30 vol. %		х						
	10 vol. %		х				х		
	5 vol. %		х				x		
	1 vol. %		х	х			х		
	5,000 ppm		х	х	х	х	х		
	2,000 ppm	х	х	х	х	х	х		
	1,000 ppm	х	х	х	х	х	х		
	500 ppm	х	х	х	х	х	х		
	300 ppm				х	х	х		
	100 ppm	х	х	х		х	х		
	50 ppm	х				х	х		
	10 ppm	х				х	х		
	1 ppm	х							

7.6. Table of Standard Measurement Ranges

 Measurement range = Zero to Full Scale (FS) Sensors are calibrated in the same range "Zero to Full Scale (FS)"
 Other ranges on request

Full Scale O_3 CL_2 H_2S NO NO₂ SO_2 100 vol. % 50 vol. % 30 vol. % < 0.1% 20 vol. % 10 vol. % < 0.1% < 0.1% 5 vol. % < 0.1% < 0.1% 1 vol. % < 0.1% 5,000 ppm < 0.1% 2,000 ppm < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% 1,000 ppm < 0.1% < 0.1% < 0.2% < 0.1% < 0.1% < 0.1% < 0.2% < 0.2% < 0.3% < 0.2% < 0.2% < 0.1% 500 ppm 300 ppm < 0.2% < 0.2% < 0.1% < 0.5% 100 ppm < 0.5% < 0.5% < 0.3% 50 ppm < 0.5% < 0.5% < 0.3% < 0.5% 10 ppm < 0.5% < 0.3%

7.7. Table of Detection Limits (= 3σ) in Percent of Full Scale

Definition of Detection Limit

The Detection Limit is the smallest measurement value which can be obtained with a specific uncertainty. This uncertainty includes the resolution, noise and stability of the gas sensor for a specific gas and specific measurement range. For evaluation of the detection limit value,

several single measurements are taken at the identical measurement conditions. With the obtained single measurement results the standard deviation "Sigma" (σ) is calculated. The values given in the table equal the triple amount of Sigma.

7.8. Recalibrations

The following recalibration intervals are recommended for UV sensors:

- Zero-point:
 - Concentrations < 300 ppm: Every 48 hours with inert gas, e.g. Nitrogen
 - \circ Concentrations ≥ 300 ppm: Every 24 hours with inert gas, e.g. Nitrogen The recalibration of the zero point is described in the software manual.
- End-point (full scale): Every 3 months with suitable calibration gas

8. Options (installed inside of the sensor casing)

8.1. Oxygen Sensor

The oxygen sensor is a sensor module available as option in addition to a RITTER MultiGas NDIR or NDUV sensor. The measured oxygen concentration is displayed in the provided software. The sensor is built into the casing of the RITTER Multi-Gas sensors.

The following versions are available:

- a) For non-aggressive gases
- b) For H₂S and similar acid gases

Specifications				
Dimensions [H x W x L]	65.4 mm × 31.7 mm × 56.6 mm			
Weight	70 g			
Tube connector	4/6 mm tube			
Measurement range	0 – 25 Vol.% O ₂	0 – 100 Vol.% O ₂	0.5 – 35 Vol.% O ₂	
Application	Biogas, Automotive ex- haust gas analyser	Industrial, fully CO ₂ re- sistant	Industrial, fully CO ₂ re- sistant, shows high re- sistance to acid gases	
Medium contact ma- terials	ABS, FKM, PPS, PTFE, stainless steel	ABS, PVC, PPS, PTFE, stainless steel	ABS, PVC, PPS, PTFE, stainless steel	
Expected operating life	> 1,000,000 Vol.% O ₂ h	~ 1,200,000 Vol.% O ₂ h	~ 1,200,000 Vol.% O ₂ h	
Sensor lifetime	4 years @ ambient air, depending on application	6 years @ ambient air, depending on application	6 years @ ambient air	
Measuring response ¹				
Resolution	0.1 Vol.%	0.1 Vol.%	0.1 Vol.%	
Response time (t90)	< 3.5 s	< 10 s	< 5 s	
Drift ²	< 1% per month	< 1% per month	< 3% per month	

¹ related to Pa = 1013 hPa; Ta = 25°C; RH = 50%; flow = 2.5l/min

² averaged across 12 months

GAS SENSORS »RITTER MULTIGAS« Infrared & Ultraviolet Sensors

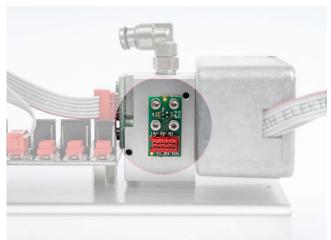
09.30

V 1.4

Options

Rev. 2023-10-26

Linearity Error		0 - 2 Vol.% O ₂ : ± 0.1 abs. 2.1 - 100 Vol.% O ₂ : ± 0.05 rel.	0 - 2 Vol.% O ₂ : ± 0.1 abs. 2.1 - 35 Vol.% O ₂ : ± 0.05 rel.
Repeatability ³		± 1 Vol.% O ₂	± 1 Vol.% O ₂
Influence of Humidity	-0.03 % rel. O₂ reading / % RH	-0.03 % rel. O₂ reading / % RH	-0.03 % rel. O₂ reading / % RH
Interferences	CO_2 : up to 20 Vol.% CO: up to 2000 ppm NO _x : up to 5000 ppm HC: up to 5000 ppm N ₂ O: up to 500 ppm	< 20 ppm O_2 response to: 100 Vol.% CO 100 Vol.% CO ₂ 100 Vol.% C3H8 3000 ppm NO in N ₂ 1000 ppm C ₆ H ₆ in N ₂ 500 ppm SO ₂ in N ₂ < 100 ppm O ₂ response to: 3000 ppm C ₂ H ₆ O 3000 ppm C ₂ H ₆ O 3000 ppm C ₂ H ₆ S ₂ < 400 ppm O ₂ response to: 100 Vol.% H ₂ < 500 ppm O ₂ response to: 2000 ppm H ₂ S in N ₂	< 20 ppm O ₂ response to: 100 Vol.% CO 100 Vol.% CO ₂ 100 Vol.% C ₃ H ₈ 1000 ppm C ₆ H ₆ in N ₂ 2000 ppm H ₂ S in N ₂ < 20000 ppm O ₂ response to: 3000 ppm NO in N ₂ 1000 ppm H ₂ in N ₂ 500 ppm SO ₂ in N ₂
Climatic conditions			
Operating tempera- ture	0 – 40 °C intermittent 40 – 50 °C	0 – 45 °C	0 – 50 °C
Storage temperature	-20 – 40 °C 5 – 25 °C recommended 40 – 50 °C max. 1 week		5 – 30 °C recommended -20 – 50 °C maximum
Air pressure	650 – 1250 hPa (mbar)	700 – 1250hPa (mbar)	600 – 1250 hPa (mbar)
Ambient humidity	0 - 9	95% rel. humidity (not conden	sing)


 3 @ 100 Vol.% O_2 applied for 5 min

8.2. Pressure Sensor

A change in the gas and/or atmospheric pressure causes a change in the number of molecules per volume and thus a change in gas density. This density change in turn has a significant influence on the result of the concentration measurement by the sensor. By measuring the gas pressure inside of the sample cell (cuvette), the value of the concentration measurement is compensated / corrected.

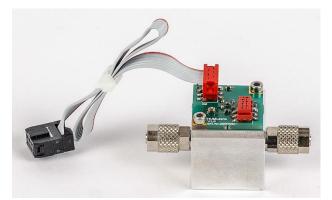
The pressure sensor enables an increase in the accuracy of the gas analysis measurement by a factor of 15:

- Without pressure sensor: ±1.5% per pressure difference of 10 hPa
 - With pressure sensor: ±0.1% per pressure difference of 10 hPa

The pressure sensor is a sensor module available as option in addition to a RITTER Multi-Gas NDIR or NDUV sensor. The sensor is built into the casing of the RITTER MultiGas sensors. The measured pressure value is displayed in the provided software. There are two versions available:

a) For non-aggressive gases

Specifications


- ▶ Measuring range: 800 1,200 mbar abs.
- Measurement accuracy ±1% of span (full scale)
- Resolution: <1 mbar</p>
- Response time (t₉₀): 1 s
- Incl. temperature compensation
- b) For H₂S and similar acid gases

Specifications

- ➢ Measuring range: 0.2 − 3.5 bar abs.
- Measurement accuracy ±1% of span (full scale)
- Resolution: 2 mbar
- Response time (t₉₀): 1 s
- > Incl. temperature compensation

8.3. Humidity Sensor

The humidity sensor is a sensor module available as option in addition to a RIT-TER MultiGas NDIR or NDUV sensor. The sensor is built into the casing of the RITTER MultiGas sensors. The measured humidity values (absolute and relative) are displayed in the provided software.

Subject to alteration

Specifications

- Polymer humidity sensor
- Measuring range: 0-100% rH
- Measurement accuracy ±2% rH of span (full scale)
- Resolution: ±1% RH
- Response time (t₉₀): 12 s
- Incl. temperature compensation
- Indicated values (in software): absolute [% absH] and relative humidity [% rH]

Display of the measured values of the humidity sensor in the data acquisition software "MARS" and their output as analog voltage signal:

The following measured values of the humidity sensor are displayed in the software in the data logging window (*Data Logging Tab*) as follows:

- Absolute humidity [g/m³]
- Relative humidity [%]
- Concentration [ppm]
- Temperature in humidity sensor [°C]

From these values, the measured **concentration** is output as an analog voltage signal on channel 4 (grey wire) for NDIR sensors, and on channel 2 (green wire) for NDUV sensors. (See also table above)

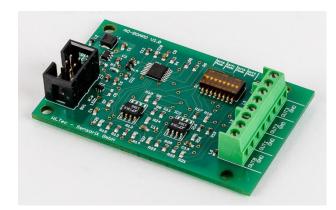
The output voltage value is determined as follows:

In the software, the measuring range for the concentration value is preset to 30,000 ppm in the Channel 4 configuration window (*Config Tab CH4*). (Can be changed individually)

The <u>measured</u> value of the concentration in the data acquisition window is set in relation to this preset value. This quotient is multiplied by the voltage level of the analog output and output as a voltage value.

Example:

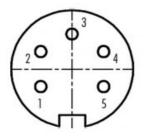
Measured value: 12,000 ppm Measuring range in *Config Tab CH4*: 30,000 ppm Quotient 12,000/30,000 = 0.4Voltage level of the analog output: 0 - 10V Output voltage: $0.4 \times 10V = 4.0V$


In MARS - Multi Analyse Research Software						
Interface RS232 COM Port COM10	✓ Scan	Open	Close		CAN	
Serial Number: Detector co	nnected: ?					
Data Logging Easic configuration Config CH	1 Config CH2	Config CH3	Config CH	4 Productio	on Sa	
ADCRef_Ch1 ?		Read	2	🗣 Pri 🗸]	
ADCMeas_Ch1 ?		Read	. 2	Pri 🗸]	
Modulation_Ch1 ?		Read	. 2	Pri v]	
Concentration_Ch1 ?	?	Read	. 2	Pri V		
ADCRef_Ch3 ?		Read	. 2	Pri v		
ADCMeas_Ch3 ?		Read	. 2	🗣 Pri 🗸]	
Modulation_Ch3 ?		Read	2	Pri 🗸]	
Concentration_Ch3 ?	?	Read	2	Pri v		
abs Humidity Ch ?	absH[g/m ^s	ן Read	. 2	Pri v]	
rel Humidity Ch ?	RH[%]	Read	2	Pri v]	
conc_Humidity_Ch ?	ppm	Read	2	Pri v]	
Humidity_Temperature ?	°C	Read	2	Pri v]	
Imamony_remperature Imamony_remperature Imam						
Interface RS232 COM Port COM10						
	Scan	Open Cl	ose (CAN C		
Serial Number: Detector conr			onfig CH4			
Data Logging Basic configuration Config CH1	Config CH2 Col		ining Cri-4	Production		
Linearisation_Ch4 (x*) 0.00000 0.	0.0000	0.00000		Write R	•	
0.00000 0.	00000		_			
Enable Ln-Function Ch4				Write R	'	
TempCompNullpoint_Ch4 (b) 0.00000 0.	0.0000	0 10E-6		Write R		
TempCompEndpoint_Ch4 (b) 0.00000 0.00000 0.00000 10E-6				Write		
Merge CH3 to CH4				Write R		
Endpoint Calibration Ch4]			Write R	N N	
Endpoint Factor Ch4 1.00000]			Write R		
μg Factor]			Write R		
Measurement Unit Ch4 ppm	~			Write R		
Measurement Range Ch4 30000.00000]			Write		
Zero Detector Ch4 Set						

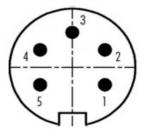
8.4. Analog Voltage Output

The Analog Voltage Output Module allows the simultaneous output of up to 4 different values at 4 separate channels:

- 4 parallel signal outputs
- The measured values of the oxygen and humidity sensor can only be transmitted alternatively
- Resolution: 16 bit
- Update rate: 1 sec


For connection to an analog data acquisition device the analog voltage output port provides <u>alternatively</u> the following voltage levels:

- 0-2V
- 0-5V
- 0 10V


The voltage range is pre-set according to the order and cannot be changed by the user.

Please note the assignments of the respective gas concentration measurements to the respective channels. These assignments are stated in the Calibration Protocol of the sensor unit.

Assignment of contacts to the channels of the gas concentration measurements at the socket and plug of the Analog Voltage Output:

View to socket

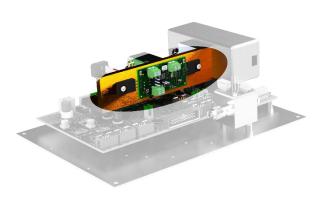
View to plug

Contact No.	Assignment to channel	Wire Colors of provided Connection Cable
1	channel 1	white
2	channel 2	green
3	channel 3	yellow
4	channel 4	grey
5	ground	brown

Analogue output signal of **oxygen and humidity sensors**: (Only one of these two signals can be transmitted alternatively.)

- NDIR sensors: Channel 4 (grey wire)
- NDUV sensors: Channel 2 (green wire)

The connection cable is delivered with open wires to be connected to the analog data acquisition device of the user. The wire colours are listed in the above table.


8.5. Heating and Thermostatting of Sensor Casing

In order to avoid condensation of humid gas inside of the sensor, the sensor and sensor casing can be heated and thermostatted. As standard, the temperature controller is preset to 50°C; lower temperatures are possible on request.

The heating element and temperature controller are mounted at the support of the measurement cuvette.

Features:

- Temperature controller 30-50°C
- Control accuracy ± 0.2 K
- Heating power 12 Watt

